资源类型

期刊论文 1524

年份

2024 3

2023 209

2022 204

2021 222

2020 130

2019 70

2018 55

2017 66

2016 53

2015 58

2014 69

2013 69

2012 37

2011 32

2010 57

2009 45

2008 32

2007 51

2006 6

2005 2

展开 ︾

关键词

SARS-CoV-2 7

微波散射计 5

COVID-19 4

Cu(In 4

HY-2 4

2型糖尿病 3

GPS 3

Ga)Se2 3

HY-2 卫星 3

HY-2A卫星 3

光催化 3

微波辐射计 3

CCS 2

CO2利用 2

CO2封存 2

CO2捕集 2

DORIS 2

HY-2A 2

中药 2

展开 ︾

检索范围:

排序: 展示方式:

Performance and mechanism of carbamazepine removal by FeS-SO process: experimental investigation and

《环境科学与工程前沿(英文)》 2023年 第17卷 第9期 doi: 10.1007/s11783-023-1713-1

摘要:

● Synergistic removal of carbamazepine (CBZ) was obtained in the FeS-S2O82– process.

关键词: FeS     S2O82–     Carbamazepine     DFT calculations     Degradation routes    

Removal of SO

Xiaolei LI, Chunying ZHU, Youguang MA

《化学科学与工程前沿(英文)》 2013年 第7卷 第2期   页码 185-191 doi: 10.1007/s11705-013-1326-5

摘要: In this work, the removal of SO from gas mixture with air and SO by ammonium bicarbonate aqueous solution as absorbent was investigated experimentally in a bubble column reactor. The effects of the concentration of ammonium bicarbonate, the SO inlet concentration of gas phase and the gas flow rate on the removal rate of SO were studied. The results showed that the higher the SO inlet concentration and the gas flow rate, the shorter the lasting time of SO completely removed in gas outlet, and then the faster the decrease in the removal rate of SO . The lasting time of SO completely removed in gas outlet increased with increasing ammonium bicarbonate concentration. During the process of SO absorption, there was a critical pH of solution. When the solution pH was less than the critical pH, it would sharply fall, resulting in a rapid decrease of the SO removal rate. A theoretical model for predicting the SO removal rate has been developed by taking the chemical enhancement and the sulfite concentration in the liquid phase into account simultaneously.

关键词: SO2 removal     bubble column reactor     removal rate     ammonium bicarbonate     absorbent    

脉冲电晕等离子体烟气脱硫工业试验研究

赵君科,王保健,任先文,朱祖良

《中国工程科学》 2002年 第4卷 第2期   页码 74-78

摘要:

利用建造在四川绵阳科学城热电厂的最大烟气处理量为20000 m3/h的脉冲电晕等离子体烟气脱硫工业中试装置,研究了影响脱硫效率的因素,获得了最佳工艺参数。究结果表明,当烟气温度在65~70℃,烟气水分含量约10%,氨硫化学剂量比为1∶1,烟停留时间大于6 s、能耗低于5 Wh/Nm3等条件下,脱硫率达85%以上。

关键词: 脉冲电晕放电     脱硫     工业中试    

acid anions on highly efficient Ce-based catalysts for selective catalytic reduction of NO with NH<sub>3sub>

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1399-1411 doi: 10.1007/s11705-023-2345-5

摘要: Three kinds of Ce-based catalysts (CePO4, CeVO4, Ce2(SO4)3) were synthesized and used for the selective catalytic reduction (SCR) of NO by NH3. NH3-SCR performances were conducted in the temperature range of 80 to 400 °C. The catalytic efficiencies of the three catalysts are as follow: CePO4 > CeVO4 > Ce2(SO4)3, which is in agreement with their abilities of NH3 adsorption capacities. The highest NO conversion rate of CePO4 could reach about 95%, and the catalyst had more than 90% NO conversion rate between 260 and 320 °C. The effect of PO43–, VO43– and SO42– on NH3-SCR performances of Ce-based catalysts was systematically investigated by the X-ray photoelectron spectroscopy analysis, NH3 temperature programmed desorption, H2 temperature programmed reduction and field emission scanning electron microscopy tests. The key factors that can enhance the SCR are the existence of Ce4+, large NH3 adsorption capacity, high and early H2 consumptions, and suitable microstructures for gas adsorption. Finally, CePO4 and CeVO4 catalysts also exhibited relatively strong tolerance of SO2, and the upward trend about 8% was detected due to the sulfation enhancement by SO2 for Ce2(SO4)3.

关键词: CePO4     CeVO4     Ce2(SO4)3     selective catalytic reduction     NO removal    

洁净煤技术的新发展——一种火电厂SO<sub>2sub>的资源化技术

肖文德,袁渭康

《中国工程科学》 2000年 第2卷 第5期   页码 77-83

摘要: 作者提出了一种以合成氨为基础的新氨法(NADS),回收烟气中的SO<sub>2sub>,生产硫酸铵、磷酸铵或硝酸铵化肥,并联产工业浓硫酸,已在2.5万kW机组试验成功,建立了计算机模拟软件。

关键词: 烟气脱硫     洁净煤技术     二氧化硫     电厂         化肥    

Effective regeneration of thermally deactivated commercial V-W-Ti catalysts

Xuesong SHANG, Jianrong LI, Xiaowei YU, Jinsheng CHEN, Chi HE

《化学科学与工程前沿(英文)》 2012年 第6卷 第1期   页码 38-46 doi: 10.1007/s11705-011-1167-z

摘要: An effective method for the regeneration of thermally deactivated commercial monolith SCR catalysts was investigated. Two types of regenerated solutions, namely NH Cl (1 mol/L) and dilute H SO (0.5 mol/L), were employed to treat the used catalyst. The effects of temperature and the regeneration process on the structural and textural properties of the catalysts were determined by X-ray diffraction, scanning electron microscopy, N adsorption/desorption, elemental analysis and Fourier transform infrared spectroscopy. The results suggest that the anatase phase of the used catalyst is maintained after exposure to high temperatures. Some of the catalytic activity was restored after regeneration. The catalyst regenerated by aqueous NH Cl had a higher activity than that of the catalyst treated by dilute H SO . The main reason is that the NH generated from the decomposition of NH Cl at high temperatures can be adsorbed onto the catalyst which promotes the reaction. The aggregated V O were partially re-dispersed during the regeneration process, and the intrinsic oxidation of ammonia with high concentrations of O is a factor that suppresses the catalytic activity.

关键词: V2O5-WO3/TiO2 catalysts     thermal deactivation     regeneration     NH4Cl     dilute H2SO4 solution    

Regeneration of Fe

Ruizhuang ZHAO, Ju SHANGGUAN, Yanru LOU, Jin SONG, Jie MI, Huiling FAN

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 423-428 doi: 10.1007/s11705-010-0503-z

摘要: Regeneration of a high-temperature coal gas desulfurization sorbent is a key technology in its industrial applications. A Fe O -based high-temperature coal gas desulfurizer was prepared using red mud from steel factory. The influences of regeneration temperature, space velocity and regeneration gas concentration in SO atmosphere on regeneration performances of the desulfurization sorbent were tested in a fixed bed reactor. The changes of phase and the composition of the Fe O -based high-temperature coal gas desulfurization sorbent before and after regeneration were examined by X-ray diffraction(XRD) and X-ray Photoelectron spectroscopy(XPS), and the changes of pore structure were characterized by the mercury intrusion method. The results show that the major products are Fe O and elemental sulfur; the influences of regeneration temperature, space velocity and SO concentration in inlet on regeneration performances and the changes of pore structure of the desulfurization sorbent before and after regeneration are visible. The desulfurization sorbent cannot be regenerated at 500°C in SO atmosphere. Within the range of 600°C – 800°C, the time of regeneration becomes shorter, and the regeneration conversion increases as the temperature rises. The time of regeneration also becomes shorter, and the elemental sulfur content of tail gas increases as the SO concentration in inlet is increased. The increase in space velocity enhances the reactive course; the best VSP is 6000 h for regeneration conversion. At 800°C, 20 vol-% SO and 6000 h , the regeneration conversion can reach nearly to 90%.

关键词: high-temperature coal gas     Fe2O3 desulfurization sorbent     SO2 atmosphere     regeneration behaviors     sulfur recovery    

Simultaneous removal of NO and chlorobenzene on VO/TiO granular catalyst: Kinetic study and performance

《环境科学与工程前沿(英文)》 2021年 第15卷 第4期 doi: 10.1007/s11783-020-1363-5

摘要:

• A V2O5/TiO2 granular catalyst for simultaneous removal of NO and chlorobenzene.

关键词: NOx     Chlorobenzene     Simultaneous removal     Kinetic study     Performance prediction     V2O5/TiO2     Graphical abstract    

Review on cryogenic technologies for CO removal from natural gas

Yujing BI, Yonglin JU

《能源前沿(英文)》 2022年 第16卷 第5期   页码 793-811 doi: 10.1007/s11708-022-0821-0

摘要: CO2 in natural gas (NG) is prone to condense directly from gas to solid or solidify from liquid to solid at low temperatures due to its high triple point and boiling temperature, which can cause a block of equipment. Meanwhile, CO2 will also affect the calorific value of NG. Based on the above reasons, CO2 must be removed during the NG liquefaction process. Compared with conventional methods, cryogenic technologies for CO2 removal from NG have attracted wide attention due to their non-polluting and low-cost advantages. Its integration with NG liquefaction can make rational use of the cold energy and realize the purification of NG and the production of by-product liquid CO2. In this paper, the phase behavior of the CH4-CO2 binary mixture is summarized, which provides a basis for the process design of cryogenic CO2 removal from NG. Then, the detailed techniques of design and optimization for cryogenic CO2 removal in recent years are summarized, including the gas-liquid phase change technique and the gas-solid phase change technique. Finally, several improvements for further development of the cryogenic CO2 removal process are proposed. The removal process in combination with the phase change and the traditional techniques with renewable energy will be the broad prospect for future development.

关键词: cryogenic CO2 removal     purification of natural gas (NG)     biogas upgrading     CH4-CO2 binary system    

VALORIZATION OF BIOGAS THROUGH SIMULTANEOUS CO AND HS REMOVAL BY RENEWABLE AQUEOUS AMMONIA SOLUTION IN

《农业科学与工程前沿(英文)》 2023年 第10卷 第3期   页码 468-478 doi: 10.15302/J-FASE-2022473

摘要:

● Simultaneous H2S and CO2 removal from biogas is studied.

关键词: biomethane     biogas purification     CO2 removal     H2S removal     membrane absorption    

Mercury removal from aqueous solution using petal-like MoS<sub>2sub

Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar

《环境科学与工程前沿(英文)》 2021年 第15卷 第1期 doi: 10.1007/s11783-020-1307-0

摘要: Abstract • Synthesized few-layered MoS2 nanosheets via surfactant-assisted hydrothermal method. • Synthesized MoS2 nanosheets show petal-like morphology. • Adsorbent showed 93% of mercury removal efficiency. • The adsorption of mercury is attributed to negative zeta potential (-21.8 mV). Recently, different nanomaterial-based adsorbents have received greater attention for the removal of environmental pollutants, specifically heavy metals from aqueous media. In this work, we synthesized few-layered MoS2 nanosheets via a surfactant-assisted hydrothermal method and utilized them as an efficient adsorbent for the removal of mercury from aqueous media. The synthesized MoS2 nanosheets showed petal-like morphology as confirmed by scanning electron microscope and high-resolution transmission electron microscopic analysis. The average thickness of the nanosheets is found to be about 57 nm. Possessing high stability and negative zeta potential makes this material suitable for efficient adsorption of mercury from aqueous media. The adsorption efficiency of the adsorbent was investigated as a function of pH, contact time and adsorbent dose. The kinetics of adsorption and reusability potential of the adsorbent were also performed. A pseudo-second-order kinetics for mercury adsorption was observed. As prepared MoS2 nanosheets showed 93% mercury removal efficiency, whereas regenerated adsorbent showed 91% and 79% removal efficiency in the respective 2nd and 3rd cycles. The adsorption capacity of the adsorbent was found to be 289 mg/g at room temperature.

关键词: Anionic surfactant     2D material     MoS2 nanosheets     Mercury removal     Adsorption capacity    

A Cu-modified active carbon fiber significantly promoted HS and PH simultaneous removal at a low reaction

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1425-3

摘要:

• Cu0.15-ACF performs the best for H2S and PH3 simultaneous removal.

关键词: ACF     H2S     PH3     Cu     Low temperature     Simultaneous removal    

A combination process of mineral carbonation with SO2 disposal for simulated flue gas by magnesia-added

Yingying Zhao, Mengfan Wu, Zhiyong Ji, Yuanyuan Wang, Jiale Li, Jianlu Liu, Junsheng Yuan

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 832-844 doi: 10.1007/s11705-019-1871-7

摘要: The desulfurization by seawater and mineral carbonation have been paid more and more attention. In this study, the feasibility of magnesia and seawater for the integrated disposal of SO and CO in the simulated flue gas was investigated. The process was conducted by adding MgO in seawater to reinforce the absorption of SO and facilitate the mineralization of CO by calcium ions. The influences of various factors, including digestion time of magnesia, reaction temperature, and salinity were also investigated. The results show that the reaction temperature can effectively improve the carbonation reaction. After combing SO removal process with mineral carbonation, Ca removal rate has a certain degree of decrease. The best carbonation condition is to use 1.5 times artificial seawater (the concentrations of reagents are 1.5 times of seawater) at 80°C and without digestion of magnesia. The desulfurization rate is close to 100% under any condition investigated, indicating that the seawater has a sufficient desulfurization capacity with adding magnesia. This work has demonstrated that a combination of the absorption of SO with the absorption and mineralization of CO is feasible.

关键词: mineral carbonation     wet SO2 disposal     seawater     desulfurization    

N<sub>2sub>O emission from a sequencing batch reactor for biological N and P removal from wastewater

Lei SHEN,Yuntao GUAN,Guangxue WU,Xinmin ZHAN

《环境科学与工程前沿(英文)》 2014年 第8卷 第5期   页码 776-783 doi: 10.1007/s11783-013-0586-0

摘要: Nitrous oxide (N O) is a greenhouse gas that can be released during biological nitrogen removal from wastewater. N O emission from a sequencing batch reactor (SBR) for biological nitrogen and phosphorus removal from wastewater was investigated, and the aims were to examine which process, nitrification or denitrification, would contribute more to N O emission and to study the effects of heterotrophic activities on N O emission during nitrification. The results showed that N O emission was mainly attributed to nitrification rather than to denitrification. N O emission during denitrification mainly occurred with stored organic carbon as the electron donor. During nitrification, N O emission was increased with increasing initial ammonium or nitrite concentrations. The ratio of N O emission to the removed ammonium nitrogen (N O-N/NH -N) was 2.5% in the SBR system with high heterotrophic activities, while this ratio was in the range from 0.14% to 1.06% in batch nitrification experiments with limited heterotrophic activities.

关键词: biological nutrient removal     denitrification     greenhouse gas     nitrification     nitrous oxide    

Does environmental infrastructure investment contribute to emissions reduction? A case of China

Xiaoqian SONG, Yong GENG, Ke LI, Xi ZHANG, Fei WU, Hengyu PAN, Yiqing ZHANG

《能源前沿(英文)》 2020年 第14卷 第1期   页码 57-70 doi: 10.1007/s11708-019-0654-7

摘要: Environmental infrastructure investment (EII) is an important environmental policy instrument on responding to greenhouse gas (GHG) emission and air pollution. This paper employs an improved stochastic impact by regression on population, affluence and technology (STRIPAT) model by using panel data from 30 Chinese provinces and municipalities for the period of 2003–2015 to investigate the effect of EII on CO emissions, SO emissions, and PM pollution. The results indicate that EII has a positive and significant effect on mitigating CO emission. However, the effect of EII on SO emission fluctuated although it still contributes to the reduction of PM pollution through technology innovations. Energy intensity has the largest impact on GHG emissions and air pollution, followed by GDP per capita and industrial structure. In addition, the effect of EII on environmental issues varies in different regions. Such findings suggest that policies on EII should be region-specific so that more appropriate mitigation policies can be raised by considering the local realities.

关键词: environmental infrastructure investment (EII)     CO2 emission     SO2 emission     PM2.5 pollution     stochastic impact by regression on population     affluence and technology (STIRPAT) model     governance    

标题 作者 时间 类型 操作

Performance and mechanism of carbamazepine removal by FeS-SO process: experimental investigation and

期刊论文

Removal of SO

Xiaolei LI, Chunying ZHU, Youguang MA

期刊论文

脉冲电晕等离子体烟气脱硫工业试验研究

赵君科,王保健,任先文,朱祖良

期刊论文

acid anions on highly efficient Ce-based catalysts for selective catalytic reduction of NO with NH<sub>3sub>

期刊论文

洁净煤技术的新发展——一种火电厂SO<sub>2sub>的资源化技术

肖文德,袁渭康

期刊论文

Effective regeneration of thermally deactivated commercial V-W-Ti catalysts

Xuesong SHANG, Jianrong LI, Xiaowei YU, Jinsheng CHEN, Chi HE

期刊论文

Regeneration of Fe

Ruizhuang ZHAO, Ju SHANGGUAN, Yanru LOU, Jin SONG, Jie MI, Huiling FAN

期刊论文

Simultaneous removal of NO and chlorobenzene on VO/TiO granular catalyst: Kinetic study and performance

期刊论文

Review on cryogenic technologies for CO removal from natural gas

Yujing BI, Yonglin JU

期刊论文

VALORIZATION OF BIOGAS THROUGH SIMULTANEOUS CO AND HS REMOVAL BY RENEWABLE AQUEOUS AMMONIA SOLUTION IN

期刊论文

Mercury removal from aqueous solution using petal-like MoS<sub>2sub

Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar

期刊论文

A Cu-modified active carbon fiber significantly promoted HS and PH simultaneous removal at a low reaction

期刊论文

A combination process of mineral carbonation with SO2 disposal for simulated flue gas by magnesia-added

Yingying Zhao, Mengfan Wu, Zhiyong Ji, Yuanyuan Wang, Jiale Li, Jianlu Liu, Junsheng Yuan

期刊论文

N<sub>2sub>O emission from a sequencing batch reactor for biological N and P removal from wastewater

Lei SHEN,Yuntao GUAN,Guangxue WU,Xinmin ZHAN

期刊论文

Does environmental infrastructure investment contribute to emissions reduction? A case of China

Xiaoqian SONG, Yong GENG, Ke LI, Xi ZHANG, Fei WU, Hengyu PAN, Yiqing ZHANG

期刊论文